Competition and cooperation among receptor tyrosine phosphatases control motoneuron growth cone guidance in Drosophila.

نویسندگان

  • C J Desai
  • N X Krueger
  • H Saito
  • K Zinn
چکیده

The neural receptor tyrosine phosphatases DPTP69D, DPTP99A and DLAR are involved in motor axon guidance in the Drosophila embryo. Here we analyze the requirements for these three phosphatases in growth cone guidance decisions along the ISN and SNb motor pathways. Any one of the three suffices for the progression of ISN pioneer growth cones beyond their first intermediate target in the dorsal muscle field. DLAR or DPTP69D can facilitate outgrowth beyond a second intermediate target, and DLAR is uniquely required for formation of a normal terminal arbor. A different pattern of partial redundancy among the three phosphatases is observed for the SNb pathway. Any one of the three suffices to allow SNb axons to leave the common ISN pathway at the exit junction. When DLAR is not expressed, however, SNb axons sometimes bypass their ventrolateral muscle targets after leaving the common pathway, instead growing out as a separate bundle adjacent to the ISN. This abnormal guidance decision can be completely suppressed by also removing DPTP99A, suggesting that DLAR turns off or counteracts a DPTP99A signal that favors the bypass axon trajectory. Our results show that the relationships among the tyrosine phosphatases are complex and dependent on cellular context. At growth cone choice points along one nerve, two phosphatases cooperate, while along another nerve these same phosphatases can act in opposition to one another.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Receptor tyrosine phosphatases regulate axon guidance across the midline of the Drosophila embryo.

Neural receptor-linked protein tyrosine phosphatases (RPTPs) are required for guidance of motoneuron and photoreceptor growth cones in Drosophila. These phosphatases have not been implicated in growth cone responses to specific guidance cues, however, so it is unknown which aspects of axonal pathfinding are controlled by their activities. Three RPTPs, known as DLAR, DPTP69D, and DPTP99A, have b...

متن کامل

Receptor tyrosine phosphatases in axon growth and guidance.

Receptor-like protein tyrosine phosphatases (RPTPs) continue to emerge as important signalling molecules in axons and their growth cones. Recent findings show that Drosophila RPTPs play key roles in guiding retinal axons and in preventing midline crossing of longitudinal axons. Vertebrate RPTPs are now implicated in controlling axon outgrowth, and preliminary evidence suggests that they too may...

متن کامل

The Tyrosine Kinase Abl and Its Substrate Enabled Collaborate with the Receptor Phosphatase Dlar to Control Motor Axon Guidance

Genetic analysis of growth cone guidance choice points in Drosophila identified neuronal receptor protein tyrosine phosphatases (RPTPs) as key determinants of axon pathfinding behavior. We now demonstrate that the Drosophila Abl tyrosine kinase functions in the intersegmental nerve b (ISNb) motor choice point pathway as an antagonist of the RPTP Dlar. The function of Abl in this pathway is depe...

متن کامل

Complex genetic interactions among four receptor tyrosine phosphatases regulate axon guidance in Drosophila.

Four receptor-linked protein tyrosine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Published data show that three of these (DLAR, DPTP69D, DPTP99A) regulate motor axon guidance decisions during embryonic development. Here we examine the role of the fourth neural phosphatase, DPTP10D, by analyzing double-, triple-, and quadruple-mutant embryos ...

متن کامل

Receptor Tyrosine Phosphatases Are Required for Motor Axon Guidance in the Drosophila Embryo

The receptor tyrosine phosphatases DPTP69D and DPTP99A are expressed on motor axons in Drosophila embryos. In mutant embryos lacking DPTP69D protein, motor neuron growth cones stop growing before reaching their muscle targets, or follow incorrect pathways that bypass these muscles. Mutant embryos lacking DPTP99A are indistinguishable from wild type. Motor axon defects in dptp69D dptp99A double ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 124 10  شماره 

صفحات  -

تاریخ انتشار 1997